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A Vision-Driven Model Based on Cognitive
Heuristics for Simulating Subgroup
Behaviors During Evacuation
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Abstract— Due to the universal existence of human subgroups
in reality, an increasing number of studies have incorporated
them into the modeling process of crowd evacuation. However,
such models seldom explain subgroup behaviors from the aspect
of what individuals see and how they respond to visual input.
Here, we propose a vision-driven model based on cognitive
heuristics, in which the mechanisms of avoidance with the
environment and attraction to other members within the field of
view are explicitly clarified. Numerical simulations demonstrate
that various spatial characteristics of subgroup members can
be effectively represented by this model, and both the intensity
and heterogeneity of spatial cohesion have significant impacts
on subgroup evacuation. By comparing with an empirical study,
the reproducibility of our model has been validated in terms of
the temporal and spatial dimensions. This model produces more
natural and realistic subgroup behaviors in multiple interaction
contexts than existing models, and also quantitatively exhibits the
superiority in reproduction effects. Overall, this work provides an
interpretable mathematical framework for modeling subgroups
from the perspective of visual perception.

Index Terms— Subgroup behaviors, evacuation dynamics, cog-
nitive heuristics, decision making, visual information.

I. INTRODUCTION

ITH the increasing frequency of human activities

in public places, crowd analysis and modeling has
been attracting considerable interest as an important research
field [1], [2]. Related studies such as crowd counting [3], [4],
behavior detection [5], [6], trajectory prediction [7], and scene
segmentation [8] have achieved important breakthroughs,
which provide valuable insights into the management and
control of crowds. In recent years, the rapid development
of computer simulations has given rise to a large number
of crowd evacuation models [9], [10], which replicate a rich
diversity of self-organization phenomena and contribute to the
understanding of human collective behaviors [11]. Due to the
fact that human crowds are not entirely composed of isolated
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individuals in reality [12], subgroups (i.e., a collective term for
social groups, pedestrian groups, small groups, etc. in other
literature) are gradually considered as a crucial topic in the
modeling process [13]. However, it is by no means an easy task
for translating the behavioral characteristics of subgroups into
explicit mathematical representations, and therefore construct-
ing relevant models that describe subgroup behaviors during
evacuation is an important research undertaking.

As one of the most classical models inspired by Newtonian
mechanics, the social force model (SFM) [14] simulates the
escape behavior of pedestrians via the combination of a self-
driven force, an interaction force with other individuals, and
an interaction force with walls or obstacles. This model is
convenient to expand and modify by incorporating specific
forces to realize the coordination movement of subgroup
members. Li et al. [15] integrated the attractive force of
subgroups into the SFM and grouped the crowd based on
grid density and social relationship to reproduce the actual
motion of crowd evacuation. Zhang et al. [16] developed a
two-layer SFM considering the interaction between leaders
and members, and experimental results successfully reflected
subgroup behaviors in earthquake evacuation. Xie et al. [17]
improved the SFM by introducing the Lennard-Jones potential
that characterizes the long-range attraction and short-range
repulsion among subgroup members, relevant simulations indi-
cated that the subgroup effect promotes the overall evacuation
time. Nevertheless, we notice that the above models have
several core issues: First, the “bird’s-eye perspective” assumes
that pedestrians have access to information about the envi-
ronment outside their field of view, which is contrary to
human physiological properties in real situations [18]. Second,
pedestrians can react to the motion states of surrounding neigh-
bors, but certain social information (e.g., velocity vectors)
has not been explicitly encoded in their visual input [19].
These issues have led to our doubts about the plausibility
of evacuation simulations associated with subgroups. Hence,
we believe it is necessary to gain a deeper understanding of
how individuals process the acquired sensory information and
develop a bottom-up subgroup model to reproduce phenomena
and behaviors more in accordance with empirical observations.

For a wide range of biological systems such as insects [20],
fish [21], [22], and birds [23], [24], vision has been confirmed
by considerable studies as a key element in the emergence of
collective behavior. However, the information processing [25]
(e.g., neural mechanisms, encoding styles) and spatio-temporal
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patterns [26] (e.g., polarized rotations, crystal-like configura-
tions) exhibited by animals differ significantly from those of
humans, making it difficult for relevant findings to be referred
for modeling crowd motion in social systems. To our knowl-
edge, several studies have attempted to integrate vision into
force-based crowd models. Helbing et al. [27] incorporated
the anisotropic features of pedestrian interaction into the SFM,
for the purpose of simulating crowds in normal and evacuation
situations more realistically. Moussaid et al. [28] established
a vision-based mechanistic model to reproduce the observed
phenomena of crowd disasters at extreme densities, in which
the desired speeds and desired directions of pedestrians were
determined by heuristic rules. Ma et al. [29] extended the
SFM from the perspective of view radius and found that
the effect of guides on crowd evacuation is associated with
the neighbor density within the field of view. Meng et al.
[30] improved the SFM by combining visibility distance and
herding behavior to explore emergency evacuation under the
view-limited conditions. Yi et al. [31] developed an extended
queuing model considering visual and morality, and numerical
simulations denoted that it successfully predicts the “detour”
phenomenon in crowd evacuation. Despite that vision has
been more or less covered in these studies, however, the
vast majority of them cannot fully address the core issues
mentioned previously. More critically, subgroup factors are
also largely ignored in the modeling process based on sensory
information, resulting in the lack of evacuation models that
utilize visual perception to drive subgroup movement.

In this paper, we propose a vision-driven model based
on cognitive heuristics for simulating subgroup behaviors
during evacuation. Our key contribution is to explicitly define
two cognitive heuristics for subgroup movement from the
viewpoint of individual response to visual information. Here,
the first heuristic “A subgroup member chooses a trade-off
between the individual desired direction and the subgroup
desired direction” determines the mathematical form of the
desired direction, and the second heuristic “A subgroup mem-
ber adjusts the desired speed in avoiding collisions with
obstacles and avoiding separation from the subgroup” pro-
duces the functional expression of the desired speed. These
two cognitive heuristics are simultaneously integrated into
the equations of motion to describe the coordination move-
ment of subgroup members. Numerical simulations show that
the critical distance of the local interaction range can be
regarded as a good representation of spatial cohesion, whose
intensity and heterogeneity both have non-negligible effects
on subgroup evacuation. According to an empirical study on
how subgroups affect crowd evacuation, the reproducibility
of our model has been validated from the temporal and
spatial dimensions. Compared with existing models, our model
produces more natural and realistic subgroup behaviors and
exhibits the superiority in reproduction effects. In conclusion,
this work makes valuable contributions to better understanding
the behavioral characteristics of subgroups during evacuation.

The rest of this paper is organized as follows. In Section II,
two cognitive heuristics are defined to construct a vision-driven
model for simulating subgroup behaviors. Section III presents
a series of numerical simulations and corresponding analytical
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explanations. Finally, relevant conclusions and future prospects
are summarized in Section IV.

II. MATHEMATICAL MODEL
A. Description of Visual Information

Vision, as one of the most important human senses for cap-
turing external information, has been considered as the primary
interaction mechanism of collective behavior. In general, when
pedestrian i attempts to reach the destination point O;, whose
visual projection field Sl.”” can be formally characterized as a
sector area with a maximum horizon distance dpax, ranging to
the left and to the right by ¢ degree with respect to the line
of sight hj, where h; is assumed to coincide with the actual
movement direction [32]. The information within the visual
projection field SIV” is mainly reflected in two aspects: First,
the highest priority for a pedestrian interacting with other
individuals and environments is to avoid collisions, and this
is regulated by neural mechanisms at the retinal and brain
levels [33], [34]. Second, the state changes of surrounding
neighbors may also significantly affect the encoding of visual
information [19], leading to the alteration in pedestrian per-
ception and behavior. As a result, the motion response of
pedestrian i to visual information will trigger the dynamic
updates of velocity v;(¢) and position x; ().

B. Cognitive Heuristics for Subgroup Movement

Here, we introduce two cognitive heuristics for subgroup
movement [35], and such a simple and fast method can be
used to describe the decision making in individual interactions.
The first heuristic determines the desired direction during the
escape process. Empirical evidence points out that pedestrians
prefer to reach their destination by an unobstructed path,
but without deviating too much from the straight path by
detours [36]. This fact indicates that a subgroup member
generally chooses the most direct path to escape when other
individuals and obstacles are considered. Here, d(0) is mea-
sured as a squared function of the distance to the destination
at directional angle 8 € [—¢, ¢]:

d(0) = d2 + £(0)* = 2dmax f (@) cos(Bp —0) (1)

where f(0) is the expected distance to the first collision
when subgroup member i moves into directional angle 6 at
speed v, and 6y represents the directional angle of the
destination point O;. The individual desired directional angle
9}"‘1 = argmind(f) is derived by minimizing the function
d(0), whereby the corresponding normalized vector ef"d can
be written as:

/" = [cos (@), sin(®;") | ®)
Besides, it has been reported that individuals tend to maintain
aggregation with their surrounding neighbors within a local
interaction range [37], which allows them to move in the
form of “cliques” and avoid frequent disintegrations. In this
case, a subgroup member is expected to be attracted by other
members in the field of view [38] until entering a certain local
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interaction range, which gives rise to the expression of the
subgroup desired direction ef”b :

th _ (XQ)qGSivix — Xj

: i S
H(Xq)qesivis — X

where x, are the positions of other members ¢ within the
visual projection field Sf” . Therefore, the first heuristic is
defined as “A subgroup member chooses a trade-off between
the individual desired direction and the subgroup desired
direction”. This results in the desired direction of subgroup
member i as below:

3)

des _ (1 —o)e" + el
C A = a)e" + e

Here, the follow willingness coefficient is defined as «o; =
8(dic — d) [(dmax — d;), where dic = [|(Xq) e guis —Xil is
the distance from subgroup member i to the centroid of
other members within the visual projection field Sl?’” , and
d (< dmax) denotes a critical distance of the local interaction
range to avoid separation from the subgroup, with a smaller
value reflecting a stronger spatial cohesion. Besides, g(x) is
zero if x < 0, otherwise it equals the argument x.

The second heuristic is concerned with the formation of
the desired speed. On the one hand, pedestrians attempt to
avoid collisions by maintaining a certain physical space when
encountering unexpected obstacles during the escape process.
This implies that a subgroup member will keep a safe distance
from the nearest obstacle in the movement direction, which
allows a time period 7; to stop before the collision occurs.
Assuming that dl.h is the distance to the first potential obstacle
along the desired direction ej’”, the desired speed v{"¢ for
avoiding collisions is calculated as follows:

“4)

Vi = L 5
- )
On the other hand, individuals strive to avoid separation
from the subgroup to which they belong to maintain aggre-
gation [39]. It means that a subgroup member will generate
accelerated behavior to avoid falling behind if he or she is
apparently far away from other members in the field of view.
This can be expressed as the desired speed v{"* for avoiding
separation:
v = (1 - ai)v? + ajv™ (6)

where v? and v"™® represent the initial and maximum desired

speeds of subgroup member i, respectively. That is, a farther
distance from this member to the centroid of other members
in the field of view will induce the willingness to follow them
at a faster speed.

From this, the second heuristic is defined as “A subgroup
member adjusts the desired speed in avoiding collisions with
obstacles and avoiding separation from the subgroup”. The
desired speed of subgroup member i is therefore given by:

v = min (vfve, vis) @)
des
]
constitutes the desired

Based on these two cognitive heuristics, the desired speed v

located in the desired direction e?’”

-

Fig. 1. Tllustration of the definitions in cognitive heuristics. A subgroup
member i attempts to reach the destination point O; when facing other
members j, k, [ within the same subgroup and external pedestrians a, b, c.

des

velocity v{“* of subgroup member i. For further aspects of
the above definitions see the illustration in Fig. 1.

C. Equations of Motion for Subgroup Members

The above-mentioned two cognitive heuristics for subgroup
movement are integrated into the equations of motion, which
primarily affects the desired velocity in the self-driven force.
Here, the position x;(¢) of subgroup member i is updated by
the following equation:

dxi® _
= =i (®)

where the temporal variation of velocity v;(¢) is characterized
by the nonlinear coupling Langevin equation as below:

m; d‘;t(t) =fiq + Z fi; + Zf,-w 9
J (D) w
in which the velocity changes with the combined effect of the
three forces on the right side of the above equation.
First, the self-driven force f;; describes that individual
acceleration is determined by the perception mechanism of
visual information, which is expressed as follows:

VIS @) —vi(0)

Ti

fig = m; (10
where subgroup member i of mass m; tends to move with a
desired velocity V?” (t), whereby adapting his or her actual
velocity v;(¢) within a characteristic time T;.

Second, it is also necessary to consider unintentional col-
lisions due to body extrusion at extreme densities, and the
physical contact force f;; with other individuals is given by:

(1)

where k is a body elasticity coefficient, n;; is the normalized
vector pointing from individual j to 7, r;; indicates the sum

fij = kg(rij — dij)m;
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Point density distributions of spatial positions for subgroup members when the steady state of motion is guaranteed to be reached. The vertical

direction indicates different subgroup sizes, and the horizontal direction denotes various critical distances. The color coding represents the specific value of

the point density.

TABLE I
PARAMETER SETTINGS OF THE PROPOSED MODEL

Symbol Description Value
) Vision angle (half-side) 90°
dmax Maximum horizon distance 10m
UZ.O Initial desired speed 1ms~1!
Ve Maximum desired speed 5ms 1
m; Pedestrian mass 60kg
i Characteristic time 0.5s
k Body elasticity coefficient 5103 kgs—2

of their radii r; and r;, and d;; denotes the distance between
their centers of mass.

Third, such unintentional collisions can also be triggered by
environments, and the physical contact force f;y with walls
is analogously written as follows:

fiw = kg(ri —diw)njw (12)

where d;w represents the distance from the center of mass of
subgroup member i to wall W, and n; means the normalized
vector perpendicular to it. Note that f;; and f; are nonzero
only at extreme densities, whereas they have no effect under
normal density conditions.

D. Parameter Settings of the Proposed Model

For parameter settings of the proposed model, whose sym-
bols, descriptions, and values are listed in Table I. The values
of vision angle (half-side) ¢, maximum horizon distance
dmax, initial desired speed v?, maximum desired speed v;"**,
pedestrian mass m;, characteristic time 7;, and body elasticity
coefficient k are referred to related literature [14], [28]. The
body of pedestrians on the horizontal plane is characterized
as a circle with radius r;, which is assumed as r; = [;/10
proportional to the height /; € [1.62m, 1.89m] of participants
from an empirical study [40] in Section III-C, while it is fixed
as r; = 0.2m in other simulations. In addition, the values
of subgroup size n, and critical distance d;" not included in
Table I are given specifically in subsequent sections.

III. NUMERICAL SIMULATIONS
A. Spatial Characteristics at Different Critical Distances

Our goal is first to explore the spatial characteristics of
subgroup members at different critical distances. Under the
conditions of critical distance dl.* = 0.5m, 1.0m, 1.5m, and
2.0m, the motion processes of subgroups with size ng = 2,
4, 6, and 8 are simulated in an unbounded scenario. We con-
duct 100 numerical simulations for each case to obtain the
statistically significant position distributions, and the relative
positions among members are recorded when the steady state
of motion is guaranteed to be reached. Fig. 2 displays the point
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Fig. 3. Bar charts of the average member distance and the spatial cohesion

at different critical distances. (a) ng = 2. (b) ng = 4. (c) ng = 6. (d) ng = 8.
The top line and whisker represent the mean value and standard deviation,
respectively.

density distributions of spatial positions for subgroup mem-
bers, where the color coding represents the specific value of
the point density. From the vertical direction, it is an obvious
fact that the growing subgroup size gives rise to the expansion
of the distribution area of spatial positions. From the horizontal
direction, the increase in critical distance causes the distribu-
tion area of spatial positions to diffuse outward from the center,
accompanied by a uniform decrease in the point density.
It is worth noting that different critical distances may induce
differentiated patterns of subgroup organization. At a small
critical distance (di* = 0.5m), subgroup members often form
very close “cliques” to move, which makes the point density
distribution distinctly characteristic. When the critical distance
reaches moderate levels (d; 1.0m and 1.5m), the point
densities are relatively higher in the anterior small area and the
posterior large area within the distribution area, which exactly
corresponds to the asymmetric leader-follower structure in
biological groups [41]. With the critical distance increasing
further (d* 2.0m), subgroup members are more loosely
distributed and it is difficult to present visually evident spatial
structures. These phenomena preliminarily demonstrate that
the critical distance can determine the spatial characteristics
of subgroup members during evacuation, which is crucial for
explaining the formation of their relative positions.

To quantitatively analyze the impact of critical distance on
the spatial characteristics of subgroup members, two evalua-
tion metrics are proposed for our analysis. One is the average
member distance d,, measured as the average of the relative
distances between all pairs of members within subgroup g,
which is given by the following equation:

dg = — > dj
9]

(13)
ng(ng ijeg

The other is the spatial cohesion c,, w[lich can be defined as
the reciprocal of the product of ng and d,; due to that a smaller
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Fig. 4. Box plots of the overall evacuation time at different critical distances.
(a) ng = 2. (b) ng = 4. (c) ng = 6. (d) ng = 8. The box indicates the data
between the first and third quartiles, the whisker denotes the data within

1.5 times the interquartile range (IQR), and the central thick line and solid
block represent the median line and mean value, respectively.
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Fig. 5. Violin plots of the average subgroup speed at different values of the
heterogeneity coefficient. (a) ng = 2. (b) ng = 4. (¢c) ng = 6. (d) ng = 8.
The box indicates the data between the first and third quartiles, the whisker
denotes the data within 1.5 times the interquartile range (IQR), and the central
hollow circle represents the median value.

number of members and a shorter average member distance
generally correspond to a stronger spatial cohesion:

1 ng —1 (14)
Co — -— = =
£ ngdy, Y dij
i.jeg

In this case, the above spatial characteristics of subgroup
members are further analyzed by these two evaluation metrics.
Fig. 3 shows the bar charts of the average member distance
and the spatial cohesion at different critical distances. As the
critical distance increases, the overall trends of monotoni-
cally increasing average member distance and monotonically
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Fig. 6. Simulation snapshots of evacuation processes involving subgroups under experimental conditions. The vertical direction indicates different subgroup
sizes, and the horizontal direction denotes various evacuation times. The members and motion trajectories for different subgroups are represented by circles

and curves with various colors.

decreasing spatial cohesion are presented. With the increasing
size at the same critical distance, the average member distance
grows slightly but the spatial cohesion decreases signifi-
cantly, which is in accordance with empirical observations
because large subgroups are more likely to be disintegrated
into multiple small subgroups [42]. Consequently, the above
results suggest that the critical distance can be regarded as a
good representation of spatial cohesion, which is helpful for
quantitatively describing the aggregation behavior of subgroup
members.

B. Effect of Spatial Cohesion on Evacuation Processes

According to these findings in the previous section, we are
interested in exploring the effect of spatial cohesion on evac-
uation processes. Here, an experimental room of 5m x 5m
with a single exit of 1.2m width from an empirical study [40]
is chosen as the simulation scenario, and the initial positions
of all pedestrians are limited to a square area of 3m x 3m
in the center of the experimental room. By adjusting different
intensities of the spatial cohesion (i.e., critical distance dl.* =
0.5m, 1.0m, 1.5m, and 2.0m), subgroups with size ng = 2, 4,
6, and 8 randomly generated in the initial area are designated

to escape towards the exit, respectively. Similarly, we run
100 numerical simulations for each case to reduce accidental
results, and the box plots of the overall evacuation time
(i.e., the time consumed by all subgroup members to leave
the experimental room) are shown in Fig. 4. At the same
critical distance, a larger subgroup size implies a longer overall
evacuation time, because the growing number of pedestrians
near the exit is more likely to cause congestion and time
delays. However, the overall evacuation time is prolonged
as the critical distance increases regardless of the subgroup
size. This indicates that a higher intensity of spatial cohesion
has a certain promoting effect on the efficiency of subgroup
evacuation, owing to the fact that the members behind will
accelerate to keep a closer relative distance to the members in
front to avoid falling behind.

Given the existence of diverse social relationships in real
situations [43], this may give rise to the heterogeneous char-
acteristics of spatial cohesion. For simplicity, without loss
of generality, the critical distance is assumed to follow a
uniform distribution di* ~U (&l.* — o, c]i* + o), where d~l.* =
1.2m stands for a moderate critical distance, and o repre-
sents a heterogeneity coefficient that reflects the degree of
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differentiation. This stochasticity can be caused by inacces-
sible internal states of subgroup members at the initial time.
We provide different values of the heterogeneity coefficient
o =0.2,0.4, 0.6, and 0.8, and simulate the escape behavior of
subgroup members under the same conditions as other settings
of the above simulation. To measure the motion characteristics
of the entire evacuation process, the average subgroup speed is
computed as vy = {(vg(?));, where vy (r) = Zieg lvi (@)l /ng is
the speed of subgroup g at time 7. As illustrated in Fig. 5,
the average subgroup speed presents a slightly decreasing
tendency as the subgroup size increases, which has been
revealed in field observations [12]. The impact of a greater
heterogeneity coefficient o on average subgroup speed is more
significant for larger subgroup sizes, as reflected in broader
longitudinal distributions. This confirms that the heterogeneity
of spatial cohesion has a non-negligible effect on subgroup
evacuation, which is also a key factor that needs to be
considered for more realistic simulations of human collective
behaviors.

C. Model Validation Based on an Empirical Study

This section is concerned with validating the reproducibility
of our model via experimental data. First, we briefly introduce
an empirical study conducted by Kriichten et al. on how
subgroups influence evacuation dynamics [40], in which they
organized a series of controlled experiments to allocate mul-
tiple participants for crowd evacuation in the previously
mentioned scenario, and found that the evacuation time for
larger subgroups is reduced due to the self-ordering effect.
This work paves the way for model validation, where partial
experimental groups used for data analysis (i.e., evacuation
experiments in “GymBay” including crowds composed of
subgroups with size n, = 2, 4, 6, and 8, respectively) are
selected to implement simulations. The model parameters
are reasonably given for each case, and the initial positions
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Fig. 8. Typical Voronoi density distributions under the fixed number of
remaining pedestrians. (a) ng = 2. (b) ng = 4. (¢c) ng = 6. (d) ng = 8. The
color coding within the Voronoi cell indicates the specific value of the local
density.

of all pedestrians are guaranteed to correspond completely
to the experimental conditions. The simulation snapshots of
evacuation processes involving subgroups are clearly displayed
in Fig. 6. It can be seen that the crowd consisting of larger
subgroups evacuates more efficiently (i.e., fewer pedestrians
remain in the scenario at the same time), which is a pre-
liminary echo with the research findings under experimental
conditions. We note that more individuals are forced to stick
tightly to the wall on the exit side in numerical simulations, but
this occurs less in experimental records. The reason might be
that participants under experimental conditions are concerned
about damaging the moveable artificial (not real) wall due to
overcrowding.

We further analyze the quantitative relationship between
the evacuation time and the number of evacuated pedes-
trians from the above simulation, and compare it with the
records under experimental conditions. As shown in Fig. 7,
the simulation results exhibit a fairly consistent tendency with
the experimental data, and the Mann—Whitney—Wilcoxon U
test confirms that there is almost no significant difference
(p-value > 0.05), which indicates that the simulation results
of our model are in accordance with empirical phenomena in
terms of the temporal dimension. Moreover, we also verify the
reproducibility of this model through the density distribution
of crowd configuration. The Voronoi diagrams can be used to
determine the local density at the position of each individual,
which is inversely proportional to the area of the corresponding
Voronoi cell [44]. The typical Voronoi density distributions
are illustrated in Fig. 8 under the fixed number of remaining
pedestrians (we set 30 pedestrians as an example here) for
different simulation cases. It is apparent that the crowd sur-
rounding the exit forms an “arch”-like configuration, which is
elongated in the direction perpendicular to the exit for the case
of larger subgroups. This reveals a self-ordering effect in larger
subgroups that members prefer to order behind one another
rather than next to each other, which reduces the number of
conflicts triggered by individuals competing for space in front
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TABLE 1T
PERFORMANCE EVALUATION OF VARIOUS SUBGROUP MODELS
. Li et al. [15] Xie et al. [17] Moussaid et al. [28] Our model
Experimental group
MSE-ET AHD-MT MSE-ET AHD-MT MSE-ET AHD-MT MSE-ET AHD-MT
Subgroup size = 2 3.717 0.624 1.318 0.617 0.848 0.558 0.113 0.545
Subgroup size = 4 2.202 0.590 1.216 0.762 0.449 0.645 0.108 0.544
Subgroup size = 6 1.643 0.965 0.675 1.102 0.240 0.769 0.077 0.686
Subgroup size = 8 0.720 0.980 0.393 1.121 0.293 0.552 0.030 0.478
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Fig. 9. Comparison of the aggregation behaviors under the condition of dispersed members. The vertical direction indicates different subgroup models, and

the horizontal direction denotes the three stages of the movement process. The subgroup members and motion trajectories for different models are represented

by circles and curves with various colors.
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Fig. 10. Comparison of the avoidance behaviors under the condition of a static obstacle. The vertical direction indicates different subgroup models, and the
horizontal direction denotes the three stages of the movement process. The subgroup members and motion trajectories for different models are represented
by circles and curves with various colors. The gray circle in the middle of the walkway implies the static obstacle (e.g., cylinder).

of the exit. Therefore, it further confirms the validity of our
model in reproducing empirical phenomena from the spatial
dimension.

D. Performance Comparison With Existing Models

In the last section of numerical simulations, it is necessary
to compare our model with existing models to highlight its
superiority. For this, three representative subgroup models
are selected as follows: The first two were proposed by
Li et al. [15] (i.e., introducing the attraction among sub-
group members into the SFM) and Xie et al. [17] (ie.,
combining the long-range attraction and short-range repulsion

among subgroup members into the SFM). The latter one
was developed by Moussaid et al. [28] (i.e., integrating two
heuristic rules for individual movement into a force-based
model). To begin with, we design three interaction contexts
in a walkway scenario of 20m x 4m, which include the
aggregation behaviors among dispersed members, avoidance
behaviors in the face of a static obstacle, and avoidance
behaviors in the face of a dynamic obstacle, respectively.
With the initial conditions of all pedestrians guaranteed to be
identical, we program and simulate subgroup behaviors based
on the equations and parameters given in these models, and
qualitatively compare them with the simulation effects of our
model.
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First, the aggregation behaviors simulated by these models
are shown in Fig. 9, in which four dispersed subgroup mem-
bers aim to move towards the other side of the walkway in an
aggregated form. In terms of Li et al.’s model, the aggregation
of subgroup members in the initial stage produces unrealis-
tic back-and-forth oscillations. Although Xie et al.’s model
forms a relatively natural aggregation process, it requires an
explicitly designated leader (which may not necessarily exist
in real situations). Even if Moussaid et al.’s model contains
visual avoidance, it is still difficult to achieve the aggregation
of members due to the lack of cohesion effects. On the
contrary, only our model can display the aggregation behavior
of dispersed members that is more consistent with human
subjective perception. Then, the avoidance behaviors when
subgroup members face a static obstacle in the middle of the
walkway are presented in Fig. 10. It is obvious that Li et al.’s
and Xie et al.’s models do not consider the visual perception
of individuals, resulting in illogical collisions between the
subgroup with the static obstacle and eventually reaching
the other side of the walkway in a forced twist. Although
Moussaid et al’s model can generate effective avoidance
behavior, these subgroup members are unable to reaggregate
after the intermediate stage. However, our model realizes
a smooth process of the subgroup first splitting and then
merging, in good agreement with the avoidance behavior in
real situations [45]. Last, two oncoming subgroups (i.e., facing
a dynamic obstacle) in Fig. 11 also exhibit similar avoidance
behavior, in which one splits to the two sides and the other
gathers towards the middle when they are interacting. In other
words, the avoidance interactions simulated by Li et al.’s and
Xie et al’s models are grossly inconsistent with empirical
observations due to the neglect of visual perception, while
Moussaid et al.’s model is not capable of aggregating subgroup
members with each other. Overall, our model can compensate
for the essential deficiencies of these models, which leads to
more natural and realistic subgroup behaviors.

To go beyond a purely qualitative analysis, we also quan-
titatively compare the reproduction effects of these models
based on experimental datasets [40]. For this, two evaluation
metrics are defined to quantify the similarity between the

simulation results and the experimental data from the tem-
poral and spatial dimensions. One is the mean squared error
of evacuation times (MSE-ET), and another is the average
Hausdroff distance of movement trajectories (AHD-MT). Note
that the reproduction effects will be better if both MSE-ET
and AHD-MT are closer to zero. For experimental groups of
different subgroup sizes, Table II presents the performance
evaluation of various subgroup models. The MSE-ET indicates
that the evacuation times of pedestrians simulated by our
model are almost significantly consistent with the experimental
data. The AHD-MT shows that the simulation results from all
subgroup models have inevitable deviations, because it is very
hard to reproduce the uncertainty of individual movement in
real situations. Nevertheless, our model still performs better
compared to other existing models. In summary, these results
further demonstrate the superiority of our model from a
quantitative perspective.

IV. CONCLUSION

In this paper, we develop an interpretable model to sim-
ulate subgroup behaviors during evacuation. On the basis of
quantifying individual visual information, the mechanisms of
avoidance with the environment and attraction to other mem-
bers within the field of view are explicitly clarified. We define
two cognitive heuristics to determine the desired directions
and desired speeds of subgroup members, and incorporate
them into the nonlinear equations of motion. By conducting
numerical simulations, several key conclusions are summa-
rized as follows: (1) The critical distance to avoid separation
reveals the spatial characteristics of subgroup members, which
can essentially be viewed as a good representation of spatial
cohesion. (2) A higher intensity of spatial cohesion has a more
significant promotion to the efficiency of subgroup evacuation,
and a greater heterogeneity of spatial cohesion reflects a larger
variation in average subgroup speed. (3) Our model presents
the simulation results fairly consistent with the experimental
data from an empirical study, and its reproducibility has been
validated from the temporal and spatial dimensions. (4) By
comparing with existing models from both qualitative and
quantitative perspectives, our model shows the dual advantage
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of both visual avoidance and cohesion effect, as well as better
performance in reproduction effects.

This work is beneficial to facilitate the understanding
of subgroup behaviors in emergency situations and estab-
lish evacuation strategies tallying with realistic implications.
On the one hand, many interesting laws of subgroups have
been found to exist under normal conditions. Here are several
examples, the number of subgroups decreases sharply with
increasing size, approximately following a (truncated) Poisson
distribution [46]. As crowd density changes from low to high,
the spatial configurations of subgroups exhibit side-by-side,
“V”-like or “U”-like [32], and “river”-like [47] formations in
turn. However, the unpredictability of disasters and accidents
results in a serious lack of data to study the phenomena
and behaviors of subgroups in emergency situations, making
computer simulations a potential research tool. In this case, the
proposed model is expected to provide an effective solution
for subgroup research. On the other hand, our simulation
results may pave the way for more targeted guidance on crowd
evacuation. Owing to the diversity of environmental charac-
teristics (e.g., risk level, building layout, and incident type)
and subgroup characteristics (e.g., proportion, size, and social
relationships) [13], researchers have the flexibility to create
a variety of scenarios and set subgroup-related parameters
for numerical simulations, and contribute valuable insights to
crowd evacuation by related methods such as optimizing the
building layout and developing faster escape routes.

It is worth noting that the limitations of our model also
need to be emphasized. First, it is feasible to assume that the
line of sight is the same as the actual movement direction, but
it must acknowledge the fact that individuals may experience
head rotations and change the line of sight due to the influence
of their surrounding environments [48]. However, this factor
is difficult to be introduced into our model because it has great
uncertainty and will extremely exacerbate the computational
complexity. Second, to simplify the modeling process, it is
supposed that vision is the only source for individuals to
acquire external information, but human senses (e.g., audition,
olfaction, and tactility) are more abundant in reality [49],
and the corresponding information can be used as additional
factors to be included in subsequent improved models. Despite
its limitations, this model certainly helps us to better realize
the behavioral characteristics of subgroups during evacuation,
and relevant findings may also be applied to other fields such
as multimode process control in industrial systems [50], [51]
and collective decision making in swarm robotics [52], [53].
In summary, we hope that this work will bring inspiration for
constructing more precise human collective motion models,
which is of great significance for crowd management during
large-scale events in the future.
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